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ABSTRACT
Using both numerical and analytical approaches, we demonstrate the existence of an effective
power-law relation L ∝ mp between the mean Lyapunov exponent L of stellar orbits chaotically
scattered by a supermassive black hole (BH) in the centre of a galaxy and the mass parameter
m, i.e. ratio of the mass of the BH over the mass of the galaxy. The exponent p is found
numerically to obtain values in the range p ≈ 0.3–0.5. We propose a theoretical interpretation
of these exponents, based on estimates of local ‘stretching numbers’, i.e. local Lyapunov
exponents at successive transits of the orbits through the BH’s sphere of influence. We thus
predict p = 2/3 − q with q ≈ 0.1–0.2. Our basic model refers to elliptical galaxy models with
a central core. However, we find numerically that an effective power-law scaling of L with m
holds also in models with central cusp, beyond a mass scale up to which chaos is dominated
by the influence of the cusp itself. We finally show numerically that an analogous law exists
also in disc galaxies with rotating bars. In the latter case, chaotic scattering by the BH affects
mainly populations of thick tube-like orbits surrounding some low-order branches of the x1

family of periodic orbits, as well as its bifurcations at low-order resonances, mainly the inner
Lindblad resonance and the 4/1 resonance. Implications of the correlations between L and m
to determining the rate of secular evolution of galaxies are discussed.

Key words: chaos – galaxies: kinematics and dynamics – galaxies: structure.

1 IN T RO D U C T I O N

There is by now overwhelming evidence that black holes (BHs)
with masses ranging from 106 to 1010M� (see review Ferrarese
& Ford 2005) exist in the centre of most galaxies: Kormendy et al.
(1995, 1997, 1998), Gebhardt et al. (1996, 2000), Faber et al. (1997),
van der Marel, de Zeeuw & Rix (1997), Gültekin et al. (2009a,b),
Kormendy & Ho (2013), McConell & Ma (2013). The presence of a
supermassive BH leads to a number of consequences for dynamics,
whose study has been a subject of extended research in the last three
decades (indicative references closely related to our present work
are Gerhard & Binney 1985; Merritt & Fridman 1996; Merritt &
Valluri 1996; Fridman & Merritt 1997; Kandrup & Sideris 2002;
Kalapotharakos, Voglis & Contopoulos 2004; Kalapotharakos &
Voglis 2005; see Merritt (1999) or Merritt (2013) for complete
reviews of the subject.)

Inter alia, the growth of a central BH provides a mechanism
driving secular evolution in galaxies. The creation of secularly
evolving models by the insertion of a central mass is ubiq-

� E-mail: cefthim@academyofathens.gr

uitous in N-body simulations of non-rotating elliptical galaxies
(Merritt & Quinlan 1998; Holley-Bockelmann et al. 2001, 2002;
Contopoulos, Voglis & Kalapotharakos 2002; Jesseit, Naab &
Burkert 2005; Kalapotharakos & Voglis 2005; Muzzio, Carpintero
& Wachlin 2005; Muzzio 2006; Kalapotharakos 2008; Valluri et al.
2010; Vasiliev & Athanassoula 2012). The secular evolution causes
two main effects: i) the density profile becomes more cuspy in the
centre (Young 1977, 1980; Holley-Bockelmann et al. 2002), and ii)
the galaxy becomes more spherical in the centre and more axisym-
metric in the outer parts (Merritt & Quinlan 1998; Kalapotharakos
et al. 2004; Kalapotharakos & Voglis 2005). On the other hand, the
growth of BHs in disc galaxies slowly disrupts the bars by changing
the stability properties of many orbits that support the bar (Pfenniger
1984; Pfenniger & de Zeeuw 1989; Hasan, Pfenniger & Norman
1993; Norman, Sellwood & Hasan 1996; Shen & Sellwood 2004;
see review Debattista 2006).

In the case of elliptical galaxies, a physical interpretation of why,
after the insertion of a central mass, secular evolution favours par-
ticular end states was provided in Kalapotharakos et al. (2004) and
Kalapotharakos & Voglis (2005) (see also Efthymiopoulos, Voglis
& Kalapotharakos 2007; Kalapotharakos 2008). This is based on
closely examining the orbital dynamics of those particles whose
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orbits are directly affected by the central mass. The main scenario
of the secular evolution process presented in these works can be
summarized as follows: at a first stage, the insertion (or gradual
‘turning on’) of the central mass results in a conversion of the ma-
jority of box orbits into chaotic orbits (Gerhard & Binney 1985).
Following the evolution of the system by N-body simulations, it is
found that the newly formed chaotic orbits start inducing a gradual
change in the distribution of matter, i.e. the shape of the system,
which becomes more spherical given that the distribution of chaotic
orbits is more isotropic. The slow change in shape, in turn, causes
an adiabatic change in the potential, thus affecting the phase space
structure, in particular at energies for which the phase space was ini-
tially (before the insertion of the central mass) occupied mainly by
box orbits passing arbitrarily close to the centre. The main change
of the phase space structure regards the volume increase of the
domain corresponding to regular short axis tube (SAT) orbits (see
Binney & Tremaine 2008 for definition). As the volume of the SAT
domain increases, some chaotic orbits are adiabatically captured in-
side the boundary of the SAT domain (Kalapotharakos et al. 2004).
This capture then induces an additional change in the form of the
system, enhancing the conversion of chaotic orbits into SAT orbits,
etc. This cyclic process maintains secular evolution up to a point
where the population of chaotic orbits decreases substantially. The
systems evolved by this mechanism are closer to oblate. Further-
more, in the final stages the percentage of chaotic orbits becomes
smaller even than the one in the original systems, before the inser-
tion of the central mass.

It should be noted that the degree up to which the transforma-
tion of a system from triaxial to axisymmetric proceeds depends on
how many box orbits are transformed to chaotically scattered orbits
due to the central mass. For example, in Holley-Bockelmann et al.
(2002) the initial percentage of outer box orbits is such that an adi-
abatic introduction of the central mass does not destroy triaxiality
in the outer parts of their galaxy simulation models. Also, Valluri
et al. (2010) examined how stochastic (or ‘non-reversible’) can the
whole process of secular evolution be characterized, by considering
the secular evolution of dark matter haloes in various models of cen-
tral mass concentrations. While their findings reconfirm the picture
of (non-reversible) stochastic evolution in the case of a point-like
central mass concentration (e.g. a BH), they find that there is also a
different, i.e. ‘regular’ (or reversible) type of evolution taking place
in systems in which the central mass is spatially distributed (e.g. a
galactic disc or bulge embedded in a triaxial halo).

Hereafter, we focus on the mechanism of secular evolution in-
duced by the chaotic scattering of centrophilic orbits. In order to
quantify the rate of secular evolution induced by the above mecha-
nism, Kalapotharakos (2008) introduced a novel quantity, measur-
able in N-body simulations, called the effective chaotic momentum:

L = �Nw

Ntotal
Lw. (1)

In equation (1), Lw is the mean value of the Lyapunov characteris-
tic number (LCN) of a subensemble of chaotic orbits in the system
after the insertion of the central mass. This is defined by the orbits
belonging to a percentage window ±0.3 around the characteris-
tic value where the distribution P(log Lj) of the logarithms of the
Lyapunov exponents Lj of all the particles in chaotic orbits presents
its global maximum. Considering a percentage window is neces-
sary since, as we will see also below, the distribution P(log Lj) is
two-peaked, while the secular evolution is caused mainly by or-
bits forming the higher of the two peaks of the distribution. As a
rule, these are centrophilic orbits passing arbitrarily closely to the

central mass. On the other hand, �Nw is the total mass inside the
same window, while Ntotal is the total mass of the N-body system
considered.

The use of the effective chaotic momentum L allows one to
quantify several phenomena related to the rate of secular evolution.
A remarkable result is that there appears to be a global (i.e. the
same in all simulations) threshold value Lth such that as a system
undergoes secular evolution, with a time-varying value of L(t), the
evolution becomes inefficient over a Hubble time when L(t) falls
below Lth (Kalapotharakos 2008).

From the two factors in the definition of L (equation 1), the
percentage of chaotic orbits �Nw/Ntotal depends on the specific
system studied, i.e. on the initial distribution function that deter-
mines the initial conditions of the simulation. However, as noted in
Kalapotharakos et al. (2004) and Kalapotharakos (2008), the distri-
bution of Lyapunov exponents, and in particular the value of Lw is
found numerically to be not very sensitive to the choice of initial
distribution function in the simulations. Thus, simulations repre-
senting systems with different profiles and triaxiality were found to
exhibit different percentages of chaotic orbits, but similar levels of
Lw , the latter found, instead, to be correlated with the value of the
mass ratio of the central mass over the mass of the hosting system.
Hereafter, this ratio is simply referred to as the ‘central mass param-
eter’ m. These findings indicate that, from the two factors entering
the computation of the rate of secular evolution via the ‘effective
chaotic momentum’, one (percentage �Nw/Ntotal of chaotic cen-
trophilic orbits) depends on the self-consistent distribution function
of the system considered, while the other (mean Lyapunov exponent
Lw) depends strongly only on the value of the mass parameter m.

In this paper we focus on this latter dependence, and seek to
model its dynamical origin. We note that a dependence of the
mean Lyapunov exponent L of the centrophilic orbits on m is a
result derived also in studies using fixed potentials (e.g. Gerhard &
Binney 1985; Merritt & Valluri 1996; Kandrup & Sideris 2002).
In Kalapotharakos (2008), on the other hand, this dependence was
explicitly determined by the orbital data of the particles in N-body
simulations yielding the value of Lw which is a good measure of L.
A remarkably good power-law dependence was found, namely

L ∝ mp, p ≈ 0.5. (2)

The proximity of p to 0.5 was also found in models of simple
galactic potentials (Kalapotharakos 2008). As shown in Section 2,
somewhat smaller values, around p ≈ 0.3, are deduced by a careful
a posteriori analysis of the numerical results presented in Merritt &
Valluri (1996) and in Kandrup & Sideris (2002).

In this paper we first reconfirm numerically the power law (2) in
further fixed-potential computations. Then, we develop a theoretical
modelling allowing us to interpret the origin of this power law. We
also justify why the exponent p obtains values in the observed range.
In particular, our theory yields an exponent p = 2/3 − q, where
q ∼ 0.1–0.2.

Our theoretical modelling stems from considering the dynam-
ics of chaotic centrophilic orbits which undergo ‘transits’, i.e. they
spend part of their time inside and another part outside the so-
called sphere of influence of the central mass (Gerhard & Bin-
ney 1985). One may note here that transiting is a necessary con-
dition for chaos, since orbits lying entirely within the sphere of
influence (i.e. the so-called pyramids – Merritt & Vasiliev 2011)
obey three quasi-integrals of motion which are deformations of
the Keplerian integrals derived using perturbation theory (here, the
perturbation consists of the triaxial galactic potential, which per-
turbs the otherwise Keplerian dynamics very close to the BH; see
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Merritt & Vasiliev 2011). On reverse, as shown below, for transiting
orbits one can determine the so-called stretching number (i.e. local
Lyapunov number) yielding the local rate of deviation of two orbits
with nearby initial conditions across one transit. The Lyapunov ex-
ponent, modelled as the sum of many such stretching numbers, turns
then to be positive, i.e. the orbits are chaotic. We provide various
types of evidence for the validity of this approximation, which al-
lows us to predict a (positive) mean value for the Lyapunov exponent
as a function of the central mass parameter m. It is remarkable, in
this respect, that during a transit the motion can be characterized as
nearly Keplerian, while far from transits the motion is box-like and
obeys three approximate integrals. Thus, both ‘piecewise’ motions
can be analysed by nearly-integrable approximations. Nevertheless,
their union yields chaos.

In our basic modelling we use a simple galactic model with a
harmonic core. This ensures a priori the presence of many box or-
bits before the insertion of the BH. However, it is well known that
realistic galactic models present power-law central density cusps
ρ(r) ∝ r−γ (Ferrarese et al. 1994; Lauer et al. 1995; see review in
Binney & Merrifield 1998, section 4.3.1). Central cusps are char-
acterized as ‘weak’ if γ < 1 or ‘strong’ if γ > 1, with the central
force tending to zero or to infinity, respectively. It is well known
(e.g., Merritt & Valluri 1996) that the central cusps are themselves
an important source of chaos for centrophilic orbits. Thus, they sig-
nificantly affect the value of L even without the presence of a central
BH. We will show, however, by numerical tests, that the presence
of the central cusp introduces a critical mass parameter scale mc,
depending on the value of γ , such that, for m > mc the chaotic scat-
tering is dominated by the BH, while for m < mc it is dominated by
the central cusp. As shown in Section 4, we then essentially recover
an effective power law L ∝ mp for m > mc. Finally, we present
numerical evidence that an effective power law of the same form
applies in rotating disc-barred galaxies with central BHs. In this
case, the relevant mass parameter m corresponds to the ratio of the
mass of the BH over the total mass of the bar. In summary, although
our theoretical interpretation for the origin of the effective law L
∝ mp is strictly valid in a quite simplified (and rather unrealistic)
galactic model, our numerical evidence is that such a law appears
generically in models of increasing complexity (and astrophysical
interest).

The structure of this paper is as follows: Section 2 presents further
numerical results about the empirical relation L ∝ mp, using a simple
galactic-type potential to which we add the potential of the central
mass. These results are used in order to probe numerically some
aspects of subsequent modelling. Our theoretical modelling itself
is presented in Section 3. Section 4 presents numerical results in
models with central cusps and discusses the extent and limits of
validity of previous results on the correlation between L and m in
such models. Section 5 deals with the L ∝ mp relation in barred disc
galaxy models, discussing both its applicability and origin, despite
the non-existence, in such systems, of box-like orbits. Section 6
summarizes the main conclusions of the present study.

2 N U M E R I C A L R E S U LT S

2.1 Hamiltonian model and numerical integrations

At first we study the relation between L and m in a simple Hamil-
tonian model that captures the main features of motion near the
centre of an elliptical galaxy with non-singular central force field,
to which we add a Keplerian term corresponding to the central mass.

The Hamiltonian is

H (x, y, z, px, py, pz) = p2
x

2
+ p2

y

2
+ p2

z

2
+ V (x, y, z), (3)

where V = V(x, y, z) is the gravitational potential:

V (x, y, z) = 1

2
ω1

2x2 + 1

2
ω2

2y2 + 1

2
ω2

3z
2

+ ε(xz + xy + y2)2 − m/
√

r2 + d2. (4)

The variables (x, y, z) are Cartesian position coordinates, (px, py,
pz) their conjugate momenta, and r =

√
x2 + y2 + z2. The soft-

ening parameter d was added in the Keplerian potential in order
to avoid large numerical errors when the orbits pass very close
to the centre. We selected a set of incommensurable frequencies
ω1 = 1, ω2 = √

2, ω3 = √
3 so as to avoid dealing with resonant or-

bits satisfying some low-order commensurability. The anharmonic-
ity parameter ε was given values between 0.01 and 0.5. Various
tests of the robustness of our results against ε are reported be-
low. We also note that the quartic potential term was chosen so as
to represent a generic form without particular symmetries, while in
galaxies with one or more planes of symmetry the potential presents
a corresponding even symmetry.

The gravitational potential (4) corresponds to a galaxy model with
a harmonic core. The far more realistic case in which a central cusp
is present is examined in detail in Section 4 below. Here, the choice
of the potential ensures a priori the existence of many regular box
orbits, when m = 0, which are transformed to chaotically scattered
orbits when m �= 0. In the model (4), the force grows linearly with
distance from the centre, while the force from the central mass
falls as an inverse square law. The two forces become similar in
magnitude at distances comparable to the radius (Gerhard & Binney
1985):

rm = m1/3rc. (5)

The sphere r = rm is called sphere of influence of the central mass.
The parameter rc is of order unity in units in which the frequencies
ωx, ωy, ωz are of order unity (as in equation 3). Then, for the total
mass of the galaxy one also has M ∼ r3

c = O(1). The periods of
orbits reaching apocentric positions ra 	rm are of order T ∼ 2π.

The equations of motion resulting from the Hamiltonian (3) are

ẋ = px

ẏ = py

ż = pz

ṗx = −ω2
1x − 2ε(xz + xy + y2)(z + y) + mx/(r2 + d2)

3/2

ṗy = −ω2
2y − 2ε(xz + xy + y2)(x + 2y) + my/(r2 + d2)

3/2

ṗz = −ω2
3z − 2ε(xz + xy + y2)x + mz/(r2 + d2)

3/2
. (6)

In Lyapunov exponent computations we also make use of the vari-
ational equations:

δẋ = δpx

δẏ = δpy

δż = δpz

δṗx = −ϑ2 V

ϑx2 δx − ϑ2 V

ϑxϑy
δy − ϑ2 V

ϑxϑz
δz

δṗy = − ϑ2 V

ϑyϑx
δx − ϑ2 V

ϑy2 δy − ϑ2 V

ϑyϑz
δz

δṗz = − ϑ2 V

ϑxϑz
δx − ϑ2 V

ϑyϑz
δy − ϑ2 V

ϑz2 δz. (7)
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In numerical computations we solve together the equations (6) and
(7). We use a seventh–eighth order Runge–Kutta method with fixed
time step �t = 10−4. For a choice of softening d = 10−3, this time
step ensures that energy is conserved to within an error between
10−12 and 10−10 for all orbits.

The LCN is defined through the relation

LCN = lim
t→∞

1

t
ln (ξ (t)/ξ (0)) , (8)

where

ξ (t) =
√

δx(t)2 + δy(t)2 + δz(t)2 + δpx(t)2 + δpy(t)2 + δpz(t)2.

In practical computations we make use of the finite-time LCN:

χ (t) = 1

t
ln (ξ (t)/ξ (0)) . (9)

We made computations for ensembles of n = 200 orbits for the
mass parameter values m = 10−5, 3 × 10−5, 10−4, 3 × 10−4, 10−3,
3 × 10−3, 10−2, as well as the values of the anharmonicity param-
eter ε = 0.01, 0.1, and 0.5. The initial conditions of each ensemble
are chosen as follows. For each initial condition, we choose first
randomly a value of the energy in the range 0 ≤ E ≤ 0.2, with uni-
form distribution. Then, we produce an orbit of zero initial angular
momentum, by setting px = py = pz = 0 and by solving for r the
equation E = V(r, θ , φ), where (r, θ , φ) are spherical coordinates
corresponding to the Cartesian point (x, y, z), and cos θ , φ are cho-
sen randomly with a uniform distribution in the intervals [−1, 1]
and [0, 2π), respectively. The selected range of energies represents
motions with apocentric distances of order r ≈ rc. These are all
centrophilic orbits with a zero mean value of either component of
the angular momentum.

2.2 Results

Fig. 1 shows the time evolution of the finite-time Lyapunov expo-
nent χ (t) for the whole ensemble of orbits in one of the numerical
experiments where m = 10−3 and ε = 0.1. The integration was up
to the time t = 105. Almost all orbits in this ensemble are chaotic, as
their finite-time Lyapunov exponents are stabilized to non-zero val-
ues. Only a small subset of orbits exhibit a value of χ (t) that keeps

falling even at the time t = 105, following the law χ (t) ∼ 1/t. This
subset defines regular orbits. The detailed time behaviour of log χ (t)
for a typical chaotic orbit is shown in Fig. 1(b). A general remark is
that for the entire set of parameter values used in our experiments,
the large majority of orbits in our ensembles turn to be chaotic. The
minimum percentage of chaotic orbits (67 per cent) is observed in
the experiment with the minimum values of m and ε, i.e. m = 10−5

and ε = 0.01. The classification of orbits as ordered or chaotic is
based on a ‘Fast Lyapunov Indicator’ criterion (Froeschlé, Lega &
Gonczi 1997), namely on whether the length ξ (t) of the deviation
vector is smaller, or larger, respectively, than a threshold value set
equal to ξ th(t) = 100t. Fig. 2 shows the distribution of the quantity
log χ (t) for three different time snapshots (t = 103, 104, 105) for the
ensembles of orbits in the experiments with central mass values m
= 10−4, 10−3, and 10−2. In all cases we can see that the distribution
log χ (t) exhibits a main peak corresponding to the chaotic orbits,
which is displaced to higher values of log χ (t) as the central mass
m increases. On the other hand, for the mass values m = 10−4 and
10−3 there appears a secondary peak in the distribution of log χ (t),
that corresponds to the small subset of regular orbits. The secondary
peak is displaced to the left, as the quantity log χ (t) for regular orbits
decreases in time as −log t. For the largest central mass values (m
= 10−2), however, we observe no secondary peak, i.e. all the orbits
turn to be chaotic. Fig. 3 shows the main result. From the histograms
of Fig. 2, the mean value L = χ (t) is extracted and plotted against
m at the snapshots t = 103, 104, and 105 for all the numerical exper-
iments. The straight lines in the same plots (in logarithmic scale)
represent power-law fittings of the relation between L and m. The
best-fitting exponents in different plots range in values between p 
0.35 and 0.5. We also note a tendency towards smaller values for
smaller t. However, the bigger values are more representative of the
true exponent, since they appear at times closer to the limit when
χ (t) tends to its limiting value for chaotic orbits, i.e. the LCN. If
l = limt → ∞χ (t) denotes the LCN limit, it is well known (see e.g.
Kalapotharakos & Voglis 2005) that the generic behaviour of χ (t) is
to fall like t−1 up to a time tl ≈ l−1. The time tl is called ‘Lyapunov
time’, and represents a saturation time beyond which the curve χ (t)
starts stabilizing towards the limiting value l. The temporal change
of χ (t) for times t < tl is reflected in the histograms of Fig. 2. We

Figure 1. (a)Time evolution of finite Lyapunov numbers for the ensemble of orbits in the case m = 10−3, ε = 0.1. (b) The detailed form of the curve χ (t) for
one chaotic orbit (initial conditions x = 0.064, y = −0.0625, z = −0.123, vx = 0.064, vy = 0.028, vz = −0.06). After the time t = 104 the variations of χ (t)
are less than 2 per cent.
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Figure 2. The distributions P(log χ (t)) for the particles in our ensembles. Every line of histograms corresponds to a different central mass parameter (m =
10−4, 10−3, 10−2) whereas every column to a different time snapshot (t = 105, 104, 103). The histograms are shown for ε = 0.1.

can observe that, along a fixed panel row (i.e. fixed m, integration
time increasing from left to right), the right wing of the histogram is
shifted in general to the left as t increases. The shift is more conspic-
uous in the uppermost panel row (small m), in which the orbits have,
in general, smaller values of the LCN, and hence, larger values of
their saturation times tl. On the other hand, in the lowermost panel
row (m = 10−2, i.e. large), the saturation time is small (tl < 103 for
nearly all orbits). Hence, the histogram N(χ ) remains practically
invariant beyond the time t = 103, as shown in the three panels of
the same row.

The difference in the saturation times between small and large m
has, as a consequence, that in each column of Fig. 3 (same param-
eters but increasing t), the value of L for all m presents some shift
downwards as t increases. The shift is important for small values
of m, while it is nearly negligible for large values of m (for which

the orbits reach their saturation times tl already before t = 103).
Hence, the effective logarithmic slope p increases as t increases.
Nevertheless, the tendency of p to increase with time is only tem-
porary, since p is stabilized after all the orbits have reached their
saturation times. This happens around t = 105. Another remark is
that the dependence of the exponent p on the anharmonicity pa-
rameter ε appears to be weak. This fact confirms that the main
source of the chaotic behaviour of the orbits is the scattering by
the central mass, while non-linear effects due to the quartic terms
in the potential are of small importance. This agrees with find-
ings in (Kandrup & Sideris 2002. It should be noted, in this re-
spect, that a power-law relation L ∼ mp can be extracted by an a
posteriori analysis of data in independent published works (Mer-
ritt & Valluri 1996; Kandrup & Sideris 2002). In particular, Kan-
drup & Sideris (2002) computed finite-time Lyapunov characteristic
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LCEs – central BH mass relation in galaxies 2453

Figure 3. The L = χ (t) versus m relation in logarithmic scale for all our experiments, with parameters as indicated in the panels.

exponents in a potential representing the lowest expansion terms of
a Dehnen potential with a superposed softened Keplerian term cor-
responding to the central mass. From their work (their fig. 12), the
relation between L and m can be compiled in a log–log scale. As
shown in Fig. 4(a), one obtains a power-law fitting with p  0.33.
Similarly, Merritt & Valluri (1996) computed the first and second
(finite-time) LCNs of chaotic orbits in potentials corresponding to
a galaxy with cuspy density profile and a central core radius. Their
results can be compared to ours in the limit where the core radius
(their parameter m0) is larger than the sphere of influence of the
central mass. This is the case m0 = 10−1 in table 1 of Merritt &
Valluri (1996), compiled in log–log scale in Fig. 4(b). Apart from
the value m = 0 (corresponding to the horizontal line going to
−∞), the three available data points appear also to be aligned in
straight lines indicating power laws both for the first and the second
Lyapunov exponent. The best-fitting exponents are p  0.27 and 
0.38, respectively, while these values are only indicative due to the
scarcity of data and the unknown influence of the central cusp of

the potential to the result. We note, finally, that the breaking of the
power law and the appearance of a non-zero value of L as m → 0
in Fig. 4(b) is due to a phenomenon called below ‘residual chaos’,
i.e. chaos due to the cusp itself. This phenomenon is analysed in
Section 4.

As an overall conclusion, a power law L ∼ mp appears quite
commonly in numerical computations of the Lyapunov exponents
of the stellar orbits chaotically scattered by a central mass in var-
ious galactic models. We now proceed in a theoretical modelling
allowing us to interpret the origin of this power law.

3 T H E O R E T I C A L M O D E L L I N G

3.1 Transit and out-of-transit dynamics

As mentioned in the Introduction, a modelling of the process of
chaotic scattering of the orbits by the central mass becomes feasible
by considering two distinct regimes of the motion, i.e. (i) transits
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2454 N. Delis, C. Efthymiopoulos and C. Kalapotharakos

Figure 4. The L versus m relation as derived from the data of (a) Kandrup and Sideris (2002, lowest order approximation of a triaxial Dehnen potential), and
(b) Merritt and Valluri (1996, potential corresponding to a galaxy with cusp). In (a), the compiled data confirm a power-law relation L ∼ mp over the whole
range of values of m considered. The solid line corresponds to a best fit yielding an exponent p  0.33. In the right-hand panel (b) the solid and dashed lines
show the dependence on m of the logarithms of the mean first and second Lyapunov exponents, respectively. Both lines extend to a non-zero value of log L
for m → 0. This represents the values corresponding to what is called ‘residual chaos’ in Section 4 below, i.e. chaos induced by the central cusp itself. The
best-fitting exponents were computed in this case only by the three rightmost data points.

through the sphere of influence and (ii) out-of-transit oscillations.
We begin by showing that within the out-of-transit regime the orbits
obey three quasi-integrals of motion. Such integrals can be written
as formal series, using, for example, the ‘third integral’ approach
(Contopoulos 1960). A formal series has the form � = �2 + �3 +
···, where �r are polynomial terms of degree r in the canonical
variables (x, y, z, px, py, pz). The term �2 is set equal to the harmonic
energy in one of the three possible degrees of freedom, i.e. (p2

x +
ω2

xx
2)/2, (p2

y + ω2
yy

2)/2, or (p2
z + ω2

zz
2)/2. Terms of higher degree

are computed recursively, by solving, order by order, the equation

d�

dt
= [�, H2 + H4] = 0, (10)

where [ ·, ·] denotes the Poisson bracket operator, and H2, H4 are
the quadratic and quartic terms of the Hamiltonian (3). This means
that the formal integrals are possible to define for the Hamiltonian
neglecting the influence of the central mass. Then, we test numeri-
cally how well they are preserved in the full model, in the out-of-
transit regime. Equation (10) yields, at degree r, the homological
equation

[H2, �r ] = [�r−2, H4]. (11)

We used a computer-algebraic program to solve, step by step, the ho-
mological equation, for all three formal integrals defined as above,
up to the 10th degree in the variables (x, y, z, px, py, pz). As an
example, for the formal integral �x = (p2

x + ω2
xx

2)/2 + · · · up to
4th degree we have

�x = 0.5x2 + 0.5p2
x − ε

(
0.0025p2

xp
2
y − 0.007pxp

3
y

− 0.0034p2
xpypz − 0.01pxp

2
ypz − 0.001 25p2

xp
2
z

+ 0.0025p2
yx

2 + 0.0034pypzx
2 + 0.001 25p2

z x
2

− 0.01pxpyxy−0.007p2
yxy−0.0052pxpzxy − 0.02pypzxy

− 0.0176pxpyy
2 + 0.01pxpzy

2 − 0.0152xy3

− 0.0086pxpyxz+0.01p2
yxz−0.005pxpzxz−0.0017p2

xyz

− 0.04pxpyyz + 0.0017x2yz − 0.03xy2z − 0.00125p2
xz

2

− 0.001 25x2z2
) + O(ε2). (12)

Similar expressions are found for the formal integrals �y, �z. The
degree of approximation of these expressions can be tested by prob-
ing how well the integral values are preserved along individual orbits
integrated first in the Hamiltonian H = H2 + H4 (i.e. without the
central mass). For orbits in the energy range considered, we find
that, up to r = 10, all three integrals are preserved to within a time
variation of about 10−(4 + r/2 − 2) at the truncation order r. Fig. 5
shows an example of this behaviour. Panel (a) shows a compari-
son of the variations of the quantity �x, computed as above, at the
truncation orders r = 4 and 10, for an example of box orbit with ini-
tial conditions as indicated in the panel. The maximum variation is
about ±2 × 10−4 at the truncation order r = 4, but it reduces to about
±3 × 10−6 at the truncation order r = 10 (magnified in panel b). In
fact, the estimates of Nekhoroshev theory (see e.g. Efthymiopoulos,
Contopoulos & Giorgilli 2004) yield that the variations continue to
decrease up to an optimal truncation order ropt ∼ 1/(εE), in which
they become exponentially small, i.e. of order O(exp ( − 1/(εE)).
However, even low-order truncations are sufficient for estimating
the values of the integrals �x, �y, and �z in practice.

Restoring, now, the term −m/(r2 + d2)1/2 in the potential, we
compute the variation of all three quantities �x, �y, �z during both
transits and the out-of-transit regime. Fig. 6(a) shows the example
of an orbit with initial conditions as in Fig. 5 (energy E = 0.18)
in the case m = 10−4, ε = 0.1. All three integrals are seen to
exhibit abrupt jumps that coincide in time (e.g. at the times t =
30, 52, or 61 in Fig. 6a). A closer focus to the jump at t = 52 is
shown in (Fig. 6b), superposing the variations of �x in time with the
variations of the distance of the orbit from the centre. Clearly, the
most important jumps take place during transits through the sphere
of influence of the central mass (which is about 2 × 10−4/3  0.1
in this case; see below, end of Section 3.1). A similar behaviour is
found for the quasi-integrals �y, �z. On the other hand, the values
of all three integrals are preserved to within two significant figures
in the out-of-transit regime (without the central mass, the precision
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LCEs – central BH mass relation in galaxies 2455

Figure 5. (a) Variations of the value of the formal integral �x truncated at order 4 (thin line) or 10 (thick line) for an example of box orbit with initial conditions
x = 0.34, y = 0.23, z = 0.21, vx = vy = vz = 0. (b) The variations of the order 10 truncated series in greater detail (notice the change of scale in the vertical
axis).

Figure 6. (a) Time evolution of the quantities �x, �y, �z for one orbit with energy E = 0.18 in the experiment with m = 10−4, ε = 0.1 (initial conditions as
in Fig. 5). (b) The time evolution of �x in detail (solid curve, corresponding to the scale of the left vertical axis), along with the time evolution of the orbit’s
distance from the centre (dashed curve, corresponding to the scale of the right vertical axis). Grey points on the latter curve correspond to local minima, while
grey points on the �x curve correspond to local extrema. Note that a local maximum of the curve �x(t) coincides always with a local minimum of the curve
r(t).

increases to about four significant figures at the truncation order
r = 4; see above). Fig. 7, now, compares the variations of �x(t) for
an orbit with the same initial conditions but different values of m
and ε. The overall size of the variations appears rather insensitive on
ε, while the size of all jumps (i.e. the difference between the value
of �x at the local maximum and minimum along a jump) clearly
increases as m increases. One can observe also that the ‘landing’
value of �x(t) at the end of one jump appears to be more and more
unpredictable as m increases. Essentially, this uncertainty in the
value of �x(t) after each jump is a measure of the chaoticity of the
orbit.

Quantifying the behaviour of the jumps after many transits allows
us to see that the scattering of the orbits can be modelled essentially
by Keplerian hyperbolic dynamics. Fig. 8(a) shows the mean value
of the jumps d�x (measured as the difference between the local
maximum and minimum values of �x at each jump) plotted against
the mean value of the radii rmin, where rmin (computed from the data
of Fig. 6b) means the radial distance from the central mass at the

point of closest approach during one jump. Both means are taken
over the ensemble of all jumps during an integration of an orbit up
to a time t = 105. The computation is repeated for different central
mass values m, keeping the orbit’s initial conditions fixed (same as
in Fig. 6). During this time, the orbit exhibits some thousands of
transits, thus the evaluation of mean values for both d� and rmin has
small statistical error. Fig. 8(a) shows the mean value of d�x as a
function of the mean value of rmin, superposing the plots in log–log
scale for the masses m = 3 × 10−5, 10−4, 3 × 10−4, 10−3, and
3 × 10−3. The straight fitting lines have inclination −1, whereas we
note that the vertical distance between two successive lines is about
equal to log103 ≈ 0.5. Thus, the mean jump d�x is consistent with
a (absolute) Keplerian potential law:

d�x ≈ m

rmin
. (13)

The above result concerns the variations of the quasi-integrals valid
in the out-of-transit regime. On the other hand, inside the sphere
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2456 N. Delis, C. Efthymiopoulos and C. Kalapotharakos

Figure 7. Variations of �x(t) for an orbit with energy E = 0.18 and four different values of m (left), or ε (right). The values of (μ, ε) are indicated in the
figure. Note the change of scale in the ordinate of the four left-hand panels, indicating that the variations of the quasi-integral depend strongly on the value of
the mass parameter (while they are nearly insensitive to the non-linearity parameter ε as long as the latter is not very close to unity).

Figure 8. (a) The points represent the logarithm of the mean absolute value of the �x integral’s jumps log d�x for different values of the central mass
parameter, versus the logarithm of the mean minimum distance rmin from the central mass over all transits for chaotic orbits with initial conditions as in Fig. 6.
The fitting straight lines have equation as indicated in the figure. (b) The mean radius rL within which the angular momentum is approximately conserved (see
text) versus m.

of influence the force field is approximately central, thus another
approximate integral, of the angular momentum L, is valid. During
transits, we follow the time variations of L and determine, at each
transit separately, the maximum radius rL up to which the varia-
tions �L are smaller in size than a fixed percentage of L (taken
as 10 percent difference measured from the value of L at the point
of closest approach to the central mass). Fig. 8(b) shows the so-
obtained mean value of rL as function of the central mass parameter
m in log–log scale for the same orbits as in Fig. 8(a). Albeit with con-
siderable scatter, the data allow us to determine a best-fitting power
law rL ≈ 2.2m0.329. This is close to the power law for the sphere of
influence (equation 5), thus allowing us to identify rL as a measure of
rm yielding the estimate rc ≈ 2. We note that the threshold of 10 per
cent variation of the angular momentum is rather arbitrary. How-
ever, it allows us to obtain a meaningful result for box orbits which,
far from the BH sphere of influence, undergo angular momentum

variations of order 100 per cent (with more stringent thresholds, we
identify significantly fewer transitions through the BH sphere of in-
fluence). In conclusion, their scatter notwithstanding, the previous
plots suggest a qualitative picture in which the dynamics of chaot-
ically scattered centrophilic orbits can be modelled as a sequence
of (i) transits through the sphere of influence, in which the orbits
follow approximately a Keplerian hyperbolic dynamics, followed
by (ii) box-like wanderings within the rest of the available space in
the interior of the equipotential ellipsoid corresponding to a fixed
value of the orbital energy. This picture is quite generic when the
three frequencies ω1, ω2, ω3 are far from low-order commensu-
rabilities. The generation of such commensurabilities necessitates
a separate treatment, since, then, the orbital sample contains also
many resonant boxlets (Miralda-Escudé & Schwarzschild 1989). In
our model, boxlets corresponding to low-order commensurabilities
are generated by the quartic potential terms in equation (4) for large
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LCEs – central BH mass relation in galaxies 2457

Figure 9. Upper row: projection of a thin tube orbit around a ‘boxlet’ 3:2 periodic orbit in the planes (x, y) (left-hand panel), and (y, z) (middle panel),
along with the evolution of its finite-time Lyapunov exponent χ (t) (right-hand panel). The central mass parameter is set equal to m = 0, and the non-linearity
parameter ε = 0.9. The orbit’s initial conditions are: x = 0.1894, y = −0.047 96, z = 0.0014, vx = −0.3578, vy = −0.4682, vz = −0.097. The orbital energy
is E = 0.193. Middle and lower rows: same as in the upper row, but with a central mass m = 10−4 and 10−3, respectively.

(O(1)) values of ε. An example is given in Fig. 9, for ε = 0.9.
When m = 0 (top row) the orbit with initial conditions as indicated
in the figure’s caption is a three-dimensional thin-tube orbit around
a resonant 3: 2 orbit which exists in the plane (x, y). The periodic
orbit is stable, and, hence, centrophobic (Merritt & Valluri 1999).
In Fig. 9, top row, the tube orbit around the boxlet also avoids the
centre. Hence, it is a regular orbit, as confirmed by computing its
Lyapunov characteristic exponent (right-hand panel), which goes to
zero. Now, the orbit’s closest approach to the centre is at a distance
r ∼ 2 × 10−2. Thus, by adding a central mass with parameter m =
10−4 (middle row), the orbit now crosses the central mass sphere of
influence (of radius ∼10−4/3). As a result, we observe that the orbit
is significantly deformed, and loses its resonant character, while the
Lyapunov exponent stabilizes to a positive value ∼10−2, i.e. the

orbit becomes weakly chaotic. For still larger m (m = 10−3), the
orbit exhibits the usual behaviour of a chaotic centrophilic orbit,
with a Lyapunov exponent ∼2.5 × 10−2.

We now model the chaotic scattering process of centrophilic or-
bits in order to derive theoretical estimates for the orbits’ Lyapunov
exponents.

3.2 Theoretical Estimates on Lyapunov Exponents

Consider an orbit integrated along with the variational vector ξ (t)
of a nearby orbit up to the time t. Let ξ i be the modulus of the
deviation vector of the orbit at the time ti = i�t, where �t = t/n
is the time step corresponding to a splitting of the integration in n
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2458 N. Delis, C. Efthymiopoulos and C. Kalapotharakos

Figure 10. (a) Comparison of the time evolution of the stretching number a(t) (equation 14) with the variations of the quasi-integrals �x, �y, �z. (b) The
mean stretching number a after thousands of transits versus m for the orbit with same initial conditions as in Fig. 6. A power-law fit yields a ∝ m0.28. The
theoretical estimate a ∝ m1/3 is found in the Appendix.

steps. The stretching number Voglis & Contopoulos (1994) at the
ith step is defined as

ai = 1

�t
ln

ξi

ξi−1
. (14)

The finite-time LCN is equal to the mean stretching number along
the orbit, since

χ (t) = 1

t
ln

ξ (t)

ξ0
= 1

n�t

n∑
i=1

ln
ξi

ξi−1
= 1

n

n∑
i=1

ai . (15)

Fig. 10(a) shows the time evolution of the stretching number a(t)
as a function of time, along with the variations of the integral �x(t)
for the orbit with initial conditions as in Fig. 7, for m = 10−3, ε = 0.1.
Far from transits, the function a(t) shows an oscillatory behaviour
around zero. This behaviour is characteristic of a nearly-harmonic
oscillation, while the quartic potential term implies an overall linear
growth of the deviation vector in the out-of-transit regime, which is
of order O(ε)t. On the other hand, in Fig. 10(a) the curve a(t) clearly
exhibits positive peaks at all transits.

Consider the set S = {i1, i2, . . . , inT } such that the orbit is in
transit at the time ti with i ∈ S, nT denoting the total number of time
steps during which the orbit is in the transit phase. Let S be the
complement of S with respect to the set {1, 2, . . . , n}. One has the
estimate

1

n�t

n−nT∑
ij ∈S,j=1

ln
ξij

ξij −1
≈ O

(
ln(εn�t)

n�t

)
,

implying that the contribution of the ‘out-of-transit’ stretching num-
bers to the final value of χ (t) goes to zero as ∼ln t/t. Thus, one has
the approximation

χ (t) ≈ 1

n�t

nT∑
ij ∈S,j=1

aij .

Setting a = (1/nT)
∑nT

ij ∈S,j=1 aij we get χ (t) ≈ (nT/n�t)a. The
quantity

Nvis = nT

n�t
,

hereafter called ‘rate or visits’, represents the number of transits per
unit period of an orbit within the sphere of influence. We then have

χ (t) ≈ Nvisa. (16)

Estimates on the mean value of χ (t) for all transiting orbits at fixed
central mass parameter m will then follow by estimating separately
the quantities a and Nvis.

Assuming, as evidenced above, that the transits are governed by
nearly-Keplerian hyperbolic dynamics, in the appendix it is shown
that for orbits of given energy E, one has the theoretical estimate

a ∝ m1/3

E1/2
. (17)

Fig. 10(b) shows the mean a computed numerically for an orbit of
fixed energy with the same initial conditions as in Fig. 6, integrated
under various values of m. Numerically we find the exponent 0.28,
which is in fair agreement with the theoretical exponent 1/3 of
equation (17). The predicted dependence of a on the energy, probed
numerically below, is also verified. We now focus on estimating
Nvis. The frequency whereby an orbit visits the sphere rm depends
on the geometry of the orbit in configuration space. We distinguish
two cases, explained with the help of Fig. 11.

(i) 3D orbit: as long as the three quantities �x, �y, �z obtain
comparable values, an orbit fills nearly uniformly the available
configuration space, which has the form of a deformed 3D box.

(ii) Planar orbit: at least one of the three quantities �x, �y, �z

obtains a value smaller than a given threshold (given by equation
18 below). Geometrically, the amplitude of oscillations in at least
one of the three axes in the out-of-transit regime should be smaller
than the radius rm of the sphere of influence (Fig. 11a, schematic).
Quantitatively

(2�k/ω
2
k)1/2 < rm, (18)

where k stands for x, y, or z.
Note that ‘linear’ orbits, i.e. tubes around the stable axial orbits

also exist, but their importance is rather limited because they are
considerably fewer than the planar or 3D orbits.

The dependence of the rate of visits to the central masses’ sphere
of influence on the geometry of orbits can be modelled in the
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LCEs – central BH mass relation in galaxies 2459

Figure 11. (a) Schematic representation of the configuration space of motion of ‘3D orbits’ and ‘planar’ orbits. The cube represents a box volume covered
by a ‘3D orbit’. The central sphere represents the central mass sphere of influence. The three thin parallelepipeds (grey) correspond to one parallelepiped
side being equal to 2rm. Planar orbits are orbits lying inside one of the three parallelepipeds. (b) The number of visits (up to time t = 105) versus m for two
orbits characterized as ‘3D’ (black points, initial conditions x = 0.227, y = 0.155, z = 0.139, vx = vy = vz = 0), and ‘planar’ (grey points, initial conditions
x = 0.227, y = 0.155, z = 0.0, vx = vy = vz = 0), for ε = 0.1. The straight lines represent power-law fittings yielding the best-fitting exponents 0.7 and 0.34,
respectively. (c)–(d) Projection of the ‘3D’ orbit in the planes (x, y) and (x, z). (e)–(f) Same for the ‘planar’ orbit. Note in (e) the change in morphology induced
by a big jump in the values of the quasi-integrals �x, �y. Such jumps are stochastic in nature, and they may occasionally convert a 3D orbit to planar and vice
versa.
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following way: for 3D orbits, considering all possible straight line
segments connecting two different points on the surface of the box
delimiting the orbit (see Fig. 11a), Nvis can be approximated as
proportional to the percentage or line segments passing through the
sphere of influence. Then, Nvis ∝ Srm/Stot, where Srm and Stot are
the surface of the sphere of influence and of the box, respectively.
The linear dimension of the box is of order l ∼ E1/2, where E is
the energy of the orbit. Thus, Nvis ∝ r2

m/E, or (taking into account
equation 5)

Nvis ∝ m2/3

E
. (19)

For planar orbits, one has, instead, the estimate N ′
vis ∝ rm/l, or

N ′
vis ∝ rm

E1/2
= m1/3

E1/2
. (20)

These estimates are confirmed numerically. Fig. 11(b) shows a com-
putation of the rate of visits Nvis, N ′

vis for two orbits with constant
energy E = 0.18, but for different mass parameters m. The number
of visits within a total integration time t = 105 are counted, and cri-

terion (18) is used in order to distinguish either orbit as ‘planar’ or
3D (the corresponding rate of visits is found by dividing the number
of visits by t = 105). The difference in the shape of the orbits is evi-
dent (Figs 11c–f). Returning to Fig. 11(b), the best-fitting exponents
of the relations Nvis and N ′

vis to m are 0.7 and 0.34, respectively, in
fair agreement with equations (19) and (20) for constant E. Taking
into account equations (20), (19), and (17) we find for the Lyapunov
number of 3D orbits of energy E the estimate

χ ≈ m2/3

E
× m1/3

E1/2
≈ m

E3/2
, (21)

whereas, for planar orbits

χ ′ ≈ m1/3

E1/2
× m1/3

E1/2
≈ m2/3

E
. (22)

Fig. 12(a) shows the values of log χ against log E for all the orbits
in our considered ensembles for six different values of the mass
parameter m as indicated in the caption. The various ensembles are
clearly distinguished by the concentration of points in the scatter
plot, the uppermost concentration corresponding to the ensemble in

Figure 12. (a) The logarithms of finite-time LCNs log χ of all orbits in the chosen ensembles versus the logarithm of the orbital energy log E for the
experiments with mass parameters (from top to bottom) m = 10−2, 3 × 10−3, 10−3, 3 × 10−4, 10−4, and 3 × 10−5, at the end of the integration (t = 105).
The straight lines represent asymptotic power-law fittings for the right parts of the plots separately for each mass parameter. (b) The energy Emax where log χ

in (a) exhibits a global maximum versus m. The power-law fitting is Emax = 2.2m2/3. (c) The plot log χ versus log E in greater detail for the masses m = 3 ×
10−3 and 3 × 10−4. In each case, numerical values are distributed between two lines with inclination −1 and −1.5, as predicted from equations (22) and (21)
for the planar and the 3D orbits, respectively.
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LCEs – central BH mass relation in galaxies 2461

the experiment with the highest mass parameter (m = 10−2). Each
ensemble can be roughly described as consisting of a ‘rising’ and
a ‘falling’ part of the value of log χ versus log E. The two parts
meet at a point of maximum of log χ . The position of the maximum
moves to the right with respect to log E as m increases. However, the
level value of log χ at the maximum remains remarkably constant,
i.e. nearly independent of m.

The straight lines show power-law fittings of χ with E for the
falling part. Despite the large scatter of the data points, we find
indicative logarithmic slopes lying in the range between −1 and
−1.5 for all ensembles considered. This behaviour will be explained
below. A power law roughly holds also in the rising part. The point of
maximum corresponds to about the point where the associated best-
fitting power laws intersect. The intersection point defines an energy
Ec. Computing and plotting Ec against m yields approximately a
power law Ec ∝ m0.63 (Fig. 12b).

These features can be understood by the following consider-
ations: first, one can note that the left part represents regular
or sticky chaotic orbits which have the morphology of pyramids
(Merritt & Vasiliev 2011), i.e. they lie nearly entirely within the
sphere of influence of the central mass. Such orbits can be described
by perturbations to the Keplerian dynamics of the central mass. The
limiting energy value El up to which an orbit lies entirely within the
radius r = rm can be estimated by requiring that the sphere r = rm

constitutes the surface of zero-velocity. The estimate

El ≈ 1

2
�2r2

m − m

rm

≈ 1

2
�2r2

c m2/3 − m2/3

rc
=

(
r2

c �2

2
− 1

rc

)
m2/3

(23)

holds, where � is a geometric-mean estimate of the harmonic fre-
quencies, bounded by the highest of the three frequencies ωx, ωy,
ωz. The dependence of El on m in equation (23) has the exponent
0.66, close to the exponent in the numerical fitting of Ec versus
m (Fig. 12b). This suggests that El  Ec (the near equality holds
also checking numerical versus theoretical coefficients). Use of the
estimate (23) is made in the next subsection.

On the other hand, most chaotic orbits lie beyond the energy
Emax. In fact, isolating the plots log χ versus log E (Fig. 12c) for
two values of the mass parameter m allows us to see that the whole
ensemble of orbits in the right wing are delimited between two
limiting lines with inclinations −1 and −1.5, respectively, i.e. as
predicted from the estimates of equations (22) and (21) for the
planar and the 3D orbits, respectively. The coexistence of ‘planar’
and ‘3D’ orbits explains in this way the scatter in the data points of
Fig. 12(a).

3.3 Final theoretical estimates: the power law L ∝ mp

Assuming (as evidenced in Fig. 1b) that a time t = 105 is sufficient
for a saturation of χ (t) close to the limiting value of chaotic orbits,
i.e. close to the LCN, the mean LCN of the orbits in an energy range
Emin ≤ E ≤ Emax can be estimated as

L ≈ 1

N0

∫ Emax

Emin

N (E)χ(t = 105, E)dE, (24)

where N0 = ∫ Emax

Emin
N (E)dE, N(E) is the number density of orbits

of energy E, and χ (t = 105, E) is a mean estimate of the value of
χ for orbits of energy E at the final integration time. Considering
only transiting orbits, we set Emin = El ∼ m2/3 (equation 23). Also,
from Fig. 12(a) it is clear that the maximum energy Emax = 0.2
considered in our samples is sufficiently high for the orbits’ values

of χ to fall with respect to the maximum by at least one order of
magnitude in the worst case (m = 10−2), and typically by several
orders of magnitude.

The mean value χ (t = 105, E) can be now estimated by con-
sidering the separate mean values of χ as well as an E-dependent
varying proportion of planar versus 3D orbits. The percentage λ of
the planar orbits is estimated by the ratio of the surface occupied by
initial conditions of planar orbits on the box surface corresponding
to an energy level E (see Fig. 11a) over the total area of the box.
Thus

λ = S2d

Stot
≈ 48E1/2rm

24E
≈ 2m1/3

E1/2
. (25)

The percentage of 3D orbits is 1 − λ ≈ 1 − 2m1/3/E1/2. Finally, χ

is estimated according to equations (21), (22), i.e.

χplanar(E) ≈ c1
m2/3

E
, χ3D(E) ≈= c2

m

E3/2
, (26)

with c1 and c2 being constants of order unity. Then, for the mean
value of χ at fixed energy we have the estimate

χ (E) ≈ λχplanar(E) + (1 − λ)χ3D(E). (27)

The main uncertainty in equation (24) regards the form of the
number density function N(E). In self-consistent models, N(E) is
determined by the distribution function of the centrophilic orbits.
On the contrary, in ‘ad hoc’ potential models, N(E) cannot be de-
termined self-consistently unless one possesses information on the
kinematic distributions allowing us to solve the reverse problem
density → N(E). Assuming no detailed model, we hereby estimate
the integral of equation (24) using two different estimates of N(E)
as follows.

(i) We consider the case of a nearly uniform distribution
N(E) = const. Combining equations (24), (27), and (26) we ob-
tain:

L ≈ 1

0.2 − m2/3
[4c1m

2/3 + 10c2m
4/3 − 2.23(4c1 + 2c2)m]. (28)

The exact dependence of L on m in the model (28) depends on
the relative values of the constants c1 and c2, as well as on factors
entering in all the above estimates. Fig. 13(a) shows L against m in
logarithmic scale, by the estimate (28) (black points) setting simply
c1 = c2 = 1. The plot indicates an approximate power law L ∼ mp.
This is produced as follows: since m is a small quantity, the leading
term in equation (28) is the one with lowest exponent, i.e. m2/3.
Thus, in the absence of additional terms, we would have p = 2/3.
However, for relatively large m, the second most important term
(linear in m) has a negative sign. Thus, it lowers the rightmost part
of the curve L versus m (the presence of m2/3 in the denominator
only marginally affects the overall power-law behaviour). If we
approximate the new curve by a single power-law fitting, we then
find a lowering of the exponent p, i.e.

L ∝ m2/3−q , (29)

with q varying between 0.1 and 0.2. However, one notices that the
whole curve in log–log scale deviates downwards from the power-
law approximation (29) for the highest mass parameter values, i.e.
q has a weak (increasing) dependence on increasing m. Comparison
with the numerical data (grey dots, for ε = 0.1) shows that the model
reproduces the slope of the numerical curve, which also exhibits a
lowering of the value of L at high mass parameter values with
respect to an exact power law. Overall, the theoretical curve has a
factor ≈2 difference from the numerical curve, which is consistent
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Figure 13. (a) Mean finite LCN L versus the mass parameter m as it follows theoretically from equation (28) (black dots), compared to the numerical
computation (grey dots) at the integration time t = 105, for all the experiments with ε = 0.1. The mean inclination is close to 0.5 in the range 10−5 < m <

10−2. (b) Theoretical computation of L versus m in an ‘isothermal’ number density model (see text). The triangles and grey fitting line correspond to the choice
σ = V

1/2
0 /4, filled circles and black solid line to σ = V

1/2
0 /2, squares and dashed line to σ = V

1/2
0 .

with uncertainties in the theoretical coefficients. Note also that a
systematic lowering of the values of L with respect to a power-
law fitting is discernible in all the plots of Fig. 3. Finally, we have
checked that the appearance of an approximate power law persists,
with exponents around p ≈ 0.5, for different choices of the constants
c1 and c2. This shows that the dependence of the integral (24) on m
(which enters in the integral as a parameter) is not sensitive on the
details of the distribution of the planar versus 3D orbits.

(ii) Fig. 13(b) shows an evaluation of the integral (24) for an
isothermal (or ‘ergodic’; see Binney & Tremaine 2008) model of
N(E), i.e. N (E) ∝ e−E/σ 2

. The constant σ is a measure of the ve-
locity dispersion in the central parts of the galaxy. Assuming a
core density ρ ≈ 3/(4π) (in our units, corresponding to total mass
M = 1 at radius R = 1), by the Virial theorem σ 2 has to be taken
to be of the order of the absolute value of the central potential well
V0 ≈ ∫ 1

0 4πGρrdr ≈ 1.5. Fig. 13(b) shows the evaluation of the

integral (24) for three different choices of σ , namely σ = V
1/2

0 ,
σ = (1/2)V 1/2

0 , and σ = (1/4)V 1/2
0 . In all three cases we recover

here as well an effective power-law behaviour, with not very differ-
ent exponents, i.e. p  0.58, 0.56, and 0.56, respectively.

In conclusion, we find that an approximate power-law relation of
the form (29) is robust against details of the form of the function
N(E).

4 E F F E C T O F C E N T R A L C U S P

In the model (4), the existence of many box orbits was a priori
guaranteed due to the harmonic core in the centre. It is well known,
however, that realistic models of the central parts of galaxies include
central density cusps ρ(r) ∼ r−γ (see e.g. the review in Binney &
Merrifield 1998, or Merritt 1999). In such models, the cusp itself
transforms most centrophilic orbits to chaotic (Merritt & Valluri
1996; Merritt & Quinlan 1998). Even without central BH, one then
expects the orbits to exhibit positive Lyapunov exponents. We here-
after call this effect ‘residual chaos’, i.e. chaos existing even when
m = 0. The corresponding mean Lyapunov exponent of the cen-
trophilic orbits is denoted by L0.

Adding, now, a central mass (m �= 0) we seek to determine the de-
pendence of L on m. The theoretical analysis of the previous section
formally breaks down, since one cannot define the formal integrals
�x, �y, �z, even for m = 0. We thus rely on numerical computa-
tions. To this end, we consider again the Hamiltonian function (3),
changing the potential model to

V = VD − m

(r2 + d2)1/2
, (30)

where VD represents the ellipsoidal Dehnen model (Dehnen 1993):

VD(x, y, z) = −πGabc

∫ ∞

0

[ψ(∞) − ψ(w)]dτ√
(τ + a2)(τ + b2)(τ + c2)

, (31)

where

ψ(w) =
∫ w2

0
ρ(w′2)dw′2,

with

w2 = x2

a2
+ y2

b2
+ z2

c2
, a ≥ b ≥ c > 0,

and ρ(w) given by

ρ(w) = (3 − γ )M

4πabc
w−γ (1 + w)−4+γ , 0 ≤ γ < 3. (32)

The parameters a, b, and c correspond to the lengths of the major,
intermediate, and minor axis of the triaxial equipotential surface
corresponding to w = 1. The parameter M determines the system’s
total mass. We use a similar algorithm as in Merritt & Fridman
(1996) in order to numerically evaluate the integral (31) as well as
its spatial derivatives, i.e. the forces.

A ‘weak cusp’ corresponds to γ < 1. In this case, the modu-
lus of any component of the force generated by VD goes to zero
at the centre, reaches a maximum value at a certain distance from
the centre, and then falls-off tending to zero at large distances by a
Keplerian law. This behaviour of the force allows us to determine
values of the parameters a, b, c, and M, for fixed γ , so as to cre-
ate a system exhibiting a similar geometry and value of the total
mass as the simplified system corresponding to the potential (4) of
Section 2, the two systems being, hence, differentiated essentially
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LCEs – central BH mass relation in galaxies 2463

only by the presence of a central cusp as opposed to a harmonic
core, respectively. The parameter determination is realized by the
following algorithm:

(i) We set the ratios a: b = ωy: ωx and a: c = ωz/ωx, where ωx,
ωy, and ωz are the parameters of (4).

(ii) We fix the value of a so that the quantity ∂VD/∂x presents
maximum at the point (x = xmax, y = 0, z = 0), with xmax chosen so
as to represent the point where the harmonic model in (4) yields a
total mass equal to unity. We find xmax  1.06.

(iii) We fix M so that the force Fx under the potential VD be equal
to the force Fx under the potential (4), with m = 0, at the point
(x = xmax, y = 0, z = 0). Note that, since the value of the force
depends essentially only on the total mass inside a given radius, this
normalization means also that the total mass inside an ellipsoidal
surface crossing x = xmax is nearly equal in the harmonic and in the
γ -models.

We examine two values of γ in the weak cusp case, namely γ =
0.3 and 0.7.

In the case, now, of a ‘strong cusp’ (γ > 1), criterion (ii) can
no longer be implemented, since ∂VD/∂x → ∞ as x → 0 (with y
= z = 0), implying that the quantity ∂VD/∂x does not present any
smooth maximum along any of the principal axes. As a simple (but
somewhat arbitrary) way to bypass this difficulty, we keep a constant
to the value a = 6.67 found by criterion (ii) in the second ‘weak
cusp’ experiment (γ = 0.7). Then, we fix the remaining constants
by criteria (i) and (iii). We run also two strong cusp experiments,
with γ = 1.3 and 1.7.

In all four experiments, the initial conditions are chosen as in
Section 2, namely 200 initial points of zero velocity randomly
distributed on equipotential surfaces with V = E, and E cho-
sen uniformly in the range 0 ≤ V ≤ Emax, with Emax chosen as
Emax = VD(xmax), so as to ensure that the resulting centrophilic or-
bits exhibit oscillations of amplitude at most equal to xmax. However,
here we integrate the orbits only up to t = 1000, since the complexity
of force evaluation in the model VD renders the computational cost
of longer integration prohibitive. Yet, as shown below, our smallest
found Lyapunov exponents are about L ≈ 10−2.5, implying that a
time t = 103 is marginally greater than the saturation time t ∼ 1/L
even for the orbits with smallest Lyapunov exponents.

Fig. 14 (analogous to Fig. 3, top row) shows the mean Lyapunov
number L = χ(t = 103) for our ensembles of orbits in the four
above experiments, as a function of the central mass parameter m.
We note immediately that power-law fittings are possible in only a
range of values of m, i.e. above a critical threshold value m > mc(γ ).
In Fig. 14, an estimate of the threshold value is found by the abscissa
of the points displayed by stars. They are computed as follows: the
four inclined lines represent power-law fittings for the rightmost
part of the numerical curve of L versus m in each experiment.
The horizontal lines illustrate the level values of the quantity L0 =
L(m = 0). We call L0 the ‘residual Lyapunov exponent’. It repre-
sents the mean Lyapunov exponent of the centrophilic orbits when
m = 0, i.e. under the influence of the central cusp only. The point
at which a horizontal line of fixed L0 intersects the corresponding
inclined fitting line of L versus m in the same experiment (same
γ ) marks the position of a star-point, and the associated abscissa,
i.e. a critical mass value mc. From Fig. 14 it is straightforward to
see that both L0 and mc increase in general with the strength of the
cusp (i.e. the value of γ ). On the other hand, it is clear from the
numerical data points that an approximate power-law correlation
between L and m persists, in all four experiments, for central mass
parameters larger than m = mc. A physical understanding of this

Figure 14. The mean Lyapunov exponent versus the central mass parameter
m in four Dehnen triaxial models with central cusps (see text). Black filled
circles correspond to the data points for the cusp exponent γ = 0.3, grey
triangles to γ = 0.7, black rhombuses to γ = 1.3, and grey squares to
γ = 1.7. The straight lines (black or grey) are power-law fittings obtained
by the rightmost seven points for γ = 0.3, five points for γ = 0.7, five
points for γ = 1.3, and four points for γ = 1.7. The horizontal dashed
lines correspond to the values log10L0, where L0 is the ‘residual Lyapunov
exponent’ in each case (see text). The points where each horizontal line
intersects the fitting line for the same corresponding γ are marked as stars.

phenomenon is the following: the chaotic scattering caused by the
cusp itself acts dynamically as a central mass concentration, whose
distribution is not point-like but follows the cusp density law. As
long as the BH mass is small, the effect of the cusp is dominant
over the effect of the BH. Thus, the mean Lyapunov exponent of the
centrophilic orbits remains nearly equal to the residual Lyapunov
exponent L0. But beyond the BH mass scale m = mc, the BH domi-
nates over the central cusp. Then, we recover a correlation of L with
m. This goes asymptotically to an effective power law. Furthermore,
the exponents found by fitting in the range m > mc are all about
p  0.4, i.e. not very different from those of the corresponding data
in Fig. 3, the essential difference in the two plots being with respect
to whether or not we observe a critical mass scale in which the
power-law breaks.

We note finally, that despite the sparsity of their data points, the
results of Merritt & Valluri (1996), reproduced here as Fig. 4(b),
show essentially the same structure as the results of Fig. 14. Thus,
the residual chaos phenomenon explains the plateau of the curve L
versus m in the data of Merritt & Valluri (1996) as well.

5 TH E L ∝ mp LAW IN D I SC-BARRED
G A L A X I E S

N-body simulations of barred galaxies (e.g., Friedli & Benz 1993;
Friedli 1994; Norman et al. 1996) have demonstrated that the growth
of a central mass concentration induces secular evolution in such
systems as well. In fact, although dynamically not favoured, BH
growth to a mass level as high as 108–109M�, corresponding to
a few per cent of the mass of a typical galactic bar, could induce
even a total destruction of the bar, with its conversion into a nearly

MNRAS 448, 2448–2468 (2015)

 at N
A

SA
 G

oddard Space Flight C
tr on N

ovem
ber 17, 2015

http://m
nras.oxfordjournals.org/

D
ow

nloaded from
 

http://mnras.oxfordjournals.org/


2464 N. Delis, C. Efthymiopoulos and C. Kalapotharakos

axisymmetric bulge-like component. Test particle integrations in
barred potentials (Pfenniger 1984; Pfenniger & de Zeeuw 1989;
Hasan et al. 1993; Norman et al. 1996; Shen & Sellwood 2004)
indicate that a primary mechanism responsible for the secular evo-
lution of bars, and even bar dissolution, is chaos induced by the
central mass.

Hereafter we study the dependence of Lyapunov exponents on the
central mass parameter in rotating disc-barred galaxies. Two points
should be immediately emphasized. (i) Our modelling in previous
sections was based on the existence of box-like centrophilic chaotic
orbits. Such orbits cannot exist in rotating disc-barred galaxies.
However, as shown in the sequel, centrophilic orbits appear around
the main families of planar periodic orbits (e.g., the x1 family).
Note that the presence of some type of centrophilic orbits is an
indispensable feature of bars with a rising density profile in the
centre. As discussed below, albeit different in morphology, the cen-
trophilic orbits in barred galaxies are found numerically to ex-
hibit a similar chaotic behaviour as the boxy centrophilic orbits
in elliptical galaxies. (ii) Besides the central mass, chaos is gen-
erated by the interaction of resonances in the corotation domain
(Contopoulos 1981; Pfenniger 1984; Sparke & Sellwood 1987;
Pfenniger & Friedli 1991; Kaufmann & Contopoulos 1996; Patsis
et al. 1997; Fux 2001; Pichardo, Martos & Moreno 2004; Kaufmann
& Patsis 2005). Nevertheless, this type of chaos is a quite distinct
phenomenon. In fact, most chaotic orbits in the corotation domain
belong to the so-called hot population (Sparke & Sellwood 1987),
hence they are not centrophilic.

5.1 Potential model

As a case study, we employ the barred-galaxy potential introduced
by Kaufmann & Contopoulos (1996) in a rough self-consistent
modelling of the galaxy NGC3992. Adding a component for the
central mass, the total potential is analysed as

Vtot = Vbh + Vh + Vd + Vb (33)

where Vbh is the potential generated from the central mass (BH),
while Vh, Vd, Vb are dark halo, disc, and bar potential components,
respectively. The potential of the central mass is, as before,

Vbh = − mbh√
r2 + d2

. (34)

The remaining terms are as in Kaufmann & Contopoulos (1996).
The dark halo term is

Vh(r) = −Mh√
r2 + b2

h

. (35)

The disc term corresponds to an exponential disc:

Vd(r) = −�0πr

[
I0

(
1

2
εdr

)
K1

(
1

2
εdr

)

−I1

(
1

2
εdr

)
K0

(
1

2
εdr

)]
, (36)

where I0, I1 and K0, K1 are modified Bessel functions of the first
and second kind, respectively. The bar term is of the Ferrers n = 2
type, with the major axis aligned with the y-axis:

Vb(x, y, z) = −105Mb

96

[
3

(
2W110x

2y2 − W120x
4y2 − W210x

2y2

− W100y
2 + W020x

4 + W200y
4 − W010x

2
)

+ W000

− W030x
6 − W300y

6
]
, (37)

Table 1. Parameters of the disc-barred galac-
tic potential. The units are kpc−1 for εd, kpc
for a, b, c and bh, 1010M� for Mh, Mb, mbh,
kms−1kpc−1 for �p, M� pc−2 for �0.

Bar: Mb α b c �p

1.5 5.5 2.1 0.55 43.6

Disc: �0 εd

750 0.235

Halo: Mh bh

27.5 12

where the coefficients Wijk are given by elliptic integrals. All model’s
parameters, as well as the value of the pattern speed �p are as in
Kaufmann & Contopoulos (1996), referring to the model for the
galaxy NGC3992. They are summarized in Table 1. Note that the
original model contains also a spiral-arm term, which, however, is
only important at radii beyond the end of the bar, and it is here
ignored.

5.2 Numerical experiments

As in Section 2, we numerically integrate the equations of motion,
as well as the variational equations, for planar orbits under the
Hamiltonian (in cylindrical coordinates)

H (r, θ, pr , pθ ) = 1

2

(
p2

r + p2
θ

r2

)
− �ppθ + V (r, θ ) = Ej, (38)

where Ej is the Jacobi constant. The Hamiltonian (38) describes the
motion in a rotating frame with pattern speed �p, while pθ is the
angular momentum in the inertial frame of reference.

Initial conditions are chosen in a way so as to ensure that they
give rise to centrophilic orbits. To this end, we consider, as above,
ensembles of 200 orbits with initial positions uniformly distributed
on a cycle of radius r = 0.1 around the galactic centre. Initial ve-
locities are given in the direction radially outwards, with modulus
chosen so that the value of the Jacobi constant is uniformly dis-
tributed in the range −2.16 × 105 ≤ Ej ≤ −2.03 × 105. This range
is chosen so as to correspond to energies well below the value at
the Lagrangian equilibrium point L1, i.e. Ej,1 = −1.915 × 105. The
corresponding orbits lie then always inside the corotation domain,
i.e. they support the bar. Orbit ensemble integrations are done for a
time t = 105 (in comparison, orbital periods are of order ∼0.1). In
different experiments the central mass varies in the range 10−6 ≤ m
≤ 10−2. Fig. 15 shows the main result: the mean Lyapunov number
L of the chaotic orbits chosen as above is plotted against the mass
parameter m, chosen here as the ratio m = mbh/mbar, since this ratio
is relevant to a quantification of the rate of secular evolution of the
bar. We observe again that the numerical data can be fitted by a
power law L ∝ mp, with p = 0.51.

We now interpret the mechanisms of chaos and identify the fam-
ilies of orbits which are responsible for this behaviour.

5.3 Interpretation

The mechanism by which a central BH generates chaos in a disc-
barred galaxy can be visualized with the help of phase portraits,
obtained by means of a suitable surface of section. Here we employ
the apocentric condition ṙ = 0, r̈ < 0, in order to define the surface
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LCEs – central BH mass relation in galaxies 2465

Figure 15. Logarithm of the mean Lyapunov number of the orbits in the
ensembles of initial conditions as described in the text versus the central
mass parameter m = mbh/mbar (in logarithmic scale) in a disc-barred galaxy
model. The logarithmic slope indicates a power-law exponent p = 0.51.

of section. We then plot the intersection points of all orbits with the
above section as projected on the plane (θ , pθ ).

Fig. 16 shows the surface of section portrait at the energies
(Jacobi constant values) Ej = −204 000 and −195 000, without
central BH (Figs 16a and d), or with a BH of mass mbh = 106M�
(Figs 16b and e). The change of phase space structure is evident,
namely the insertion of the central mass destroys many rotational
Kolmogorov – Arnold – Moser (KAM) curves, corresponding to
regular (quasi-periodic) orbits around the galactic centre. Also, at
the second energy level (lower panels), which corresponds to motion
closer to corotation, a number of librational KAM curves around
the 1:4 island of stability are destroyed. In fact, one can see that
at both energy levels the orbits converted to chaotic are tube orbits
around the 2:1 and 4:1 branches of the x1 stable periodic orbit. The
periodic orbits themselves at the corresponding energies are shown
in Figs 16(c) and (f), respectively. The 2:1 orbits exist up to energies
≈−199 000. When mbh = 0, the quasi-periodic tube orbits around
a 2:1 orbit give rise to two islands of stability in the surface of
section. The outermost librational invariant curves of these islands
correspond to thick tube orbits (Fig. 17). The crucial difference be-
tween the two tube orbits in Figs 17(a) and (b) is that in Fig. 17(a)
the tube orbit leaves a hole in the centre, whose dimension is larger
than the BH’s sphere of influence. On the contrary, the tube thick-
ness of the orbit in Fig. 17(b) is larger than the half-width of the
orbit’s amplitude of oscillation in the y-axis, i.e. the orbits leaves no
hole in the centre. Then, after the insertion of the central mass, the
orbit with same initial conditions as in Fig. 17(a) retains its regu-
lar (quasi-periodic) character (Fig. 17c), while the orbit with same

Figure 16. Apocentric Poincaré surfaces of section with mbh = 0 at the energies (a) Ej = −204 000 and (d) Ej = −195 000. (b and e) Same as in (a and d), but
now with a central BH of mass mbh = 106M�. The x1 periodic orbit (c) at the energy Ej = −204 000 has a 2:1 form (two apocentric passages per revolution
in the rotating frame), while (f) at the energy Ej = −195 000 it has a 4:1 form.
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Figure 17. (a) Tube orbit with energy −216 000 around the 2:1 periodic orbit before the insertion of the central mass. The initial conditions correspond to a
librational invariant curve of the 2:1 island of stability which survives after the insertion of the BH. (b) Same as in (a), but for initial conditions on an invariant
curve of the 2:1 island of stability which is destroyed after the insertion of the BH. (c) The orbit with same initial conditions as in (a) remains ordered after the
insertion of a central mass mbh = 106M�. (d) On the contrary, the orbit with same initial conditions as in (b) is converted to chaotic. (e and f) Same as in (a
and b) but for two tube orbits of the 4:1 resonance. (g and h) The orbits with the same initial conditions as in (e and f), respectively, after the insertion of the
central mass mbh = 106M�. The one of (g) remains regular, while the one of (h) is chaotic.

initial conditions as in Fig. 17(c) becomes chaotic (Fig. 17d). A
similar criterion applies to whether or not a thick tube orbit around
the 4:1 periodic orbit becomes regular or chaotic after the insertion
of the central mass (Figs 17e–h). In fact, one readily finds that the
initial conditions separating these two types of orbits correspond to
the last librational KAM curve in the 4:1 island of stability of the
section of Fig. 16(d).

Investigating the efficiency of the above mechanism to other
resonances, one finds that the mechanism is not able to produce
chaotic orbits in the cases of other low-order resonances like 3:1
and 6:1. In fact, the tube orbits trapped around these central periodic
orbits in this model form rather small islands of stability. Thus, the
tube thickness is small, and we find no tube orbits able to cross the
central masses’ sphere of influence. A similar restriction holds for
higher order families in the same model.

6 C O N C L U S I O N S

In this paper we analyse the origin of a numerically observed ap-
proximate power-law relation L ∝ mp, with p ∼0.3–0.5, where L
is the mean Lyapunov exponent of centrophilic orbits in galaxies
with central masses (BHs), and m the mass parameter, i.e. the ratio
of the central mass over the mass of the galaxy. Also, we find that
such a law can be recovered in quite different contexts and models
of galactic systems, ranging from elliptical galaxies with cores or
cusps to rotating barred galaxies. In particular:

(i) We first make numerical experiments with a simple model of
elliptical galaxy with smooth central force field, to which the force
field of the central mass is superposed. The experiments confirm
the power law L ∝ mp, when L is estimated through its ‘finite-time’
analogue, i.e. the mean value of finite-time Lyapunov exponents.
We demonstrate the statistics of these values for centrophilic orbits.
We also find that p has a tendency towards the upper limit 0.5 at
longer integration times.

(ii) We demonstrate that the law L ∝ mp can be extracted also
from compiling data of previous works in the literature (Merritt
& Valluri 1996; Kandrup & Sideris 2002), in galaxies with both
smooth and cuspy centres.

(iii) We make a theoretical analysis of the Lyapunov exponents
for centrophilic box-like orbits in elliptical galaxies. We demon-
strate that the mean Lyapunov exponent can be obtained by inde-
pendently estimating (a) the mean value of the so-called stretching
number (=one-step Lyapunov number) at every transit of an orbit
from the sphere of influence of the central mass, and (b) the rate
of visits of the orbits to the sphere of influence. In both cases, we
find how the various estimates depend on m as well as on the orbital
energy. Regarding (b), we find two different estimates, according to
whether an orbit can be characterized as ‘planar’ or ‘3D’. Putting
all estimates together, one arrives at a theoretical reproduction of
the L ∝ mp law.

(iv) In the case of models with central cusps, we find a critical
mass scale mc, such that for central mass parameters m < mc the
chaotic behaviour of the centrophilic orbits is dominated by the
central cusp (we call this ‘residual chaos’), while for m > mc an
approximate power-law correlation L ∝ mp is restored, with p ≈ 0.4.
The critical mass scale mc as well as the ‘residual mean Lyapunov
exponent’ L0 are increasing functions of the exponent γ in power-
law central cusps ρ(r) ∼ r−γ .

(v) We finally explore numerically the correlation between L and
m for the centrophilic orbits in disc galaxies with rotating bars. In
this case, while there can be no box-like centrophilic orbits, we
find several quasi-periodic tube orbits around the main families of
periodic orbits (like 2:1 or 4:1), for which the tube is thick enough
so as to pass arbitrarily close to the centre. These orbits support the
rising density profile of the bar at the centre. Their initial conditions
are close to the last librational KAM curve of the islands of stability
around their corresponding periodic orbits. Numerically, we observe
that only the tube orbits around the lowest-order periodic orbits can
become centrophilic. Furthermore, for the chaotic counterparts of

MNRAS 448, 2448–2468 (2015)

 at N
A

SA
 G

oddard Space Flight C
tr on N

ovem
ber 17, 2015

http://m
nras.oxfordjournals.org/

D
ow

nloaded from
 

http://mnras.oxfordjournals.org/


LCEs – central BH mass relation in galaxies 2467

these orbits, after the insertion of the BH, we numerically recover
again a correlation of the form L ∝ mp.
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APPENDI X A :

We theoretically estimate the local value of the ‘stretching number’
of an orbit transiting the sphere of influence of the central mass
(Fig. A1), schematic, as follows: approximating the motion during
the transit as Keplerian, in polar coordinates (r, φ) with respect to

Figure A1. Schematic representation of our model for orbit transits via the
sphere of influence of the central mass. An orbit enters the sphere at point A
and exits at point B. Hyperbolic Keplerian dynamics is assumed in order to
estimate the orbit’s local ‘stretching number’ arising at the transit (see text).

MNRAS 448, 2448–2468 (2015)

 at N
A

SA
 G

oddard Space Flight C
tr on N

ovem
ber 17, 2015

http://m
nras.oxfordjournals.org/

D
ow

nloaded from
 

http://mnras.oxfordjournals.org/


2468 N. Delis, C. Efthymiopoulos and C. Kalapotharakos

the origin on a plane including the origin and the entry and exit
points (A,B, respectively), one has

1

r
= Gm

C2
+ A cos(φ − φ0), (A1)

where C is the local value of the angular momentum (assumed
constant during the transit, see Section 3). The constant A is given
by

A = e
Gm

C2
, (A2)

where e =
√

1 + 2EC2/mG2, whereas φ0 is the angle correspond-
ing to the closest approach to the origin, at distance rmin. The orbit
has the same velocity measure v0 at the points A and B. We assume
that the velocity vector at A forms an angle u with the horizontal
axis.

With the above conventions, to a given entry angle φ corresponds
a given exit angle φ′ from the sphere of influence. After some
algebra (taking into account equation A1 as well as the preservation
of energy and angular momentum), we find

φ − φ′ = 2 cos−1

⎡
⎣ υ0 sin (φ + u)√

(Gm/rmυ0 sin (φ + u))2 + υ2
0 − 2Gm/rm

×
(

1 − Gm

rmυ2
0 sin2 (φ + u)

)]
. (A3)

The local value of the stretching number can now be estimated
by the difference in φ′ for two nearby orbits entering at slightly
different angles φ. Taking the derivative of equation (A3) we have∣∣∣∣dφ′

dφ

∣∣∣∣
=

∣∣∣∣1+ d

dφ′

[
2 cos−1

[
υ0 sin (φ+u)√

(Gm/rmυ0 sin (φ+u))2+υ2
0−2Gm/rm

(
1 − Gm

rmυ2
0 sin2 (φ + u)

)]]∣∣∣∣. (A4)

Re-orienting the frame of reference, without loss of generality
the parameter u can be set equal to zero. The quantity |dφ′/dφ|
is the measure of the stretching number a for the transit motion
inside the sphere rm. One can check that for typical energies of cen-
trophilic orbits, one has 2mrmυ2

0 << r2
mυ4

0 . Then, equation (A4)
reduces to∣∣∣∣dφ′

dφ

∣∣∣∣ 
∣∣∣∣1 − 2

1 + m csc2 φ/rmυ2
0

1 + m2 csc2 φ/r2
mυ4

0

∣∣∣∣ . (A5)

The mean stretching number of a transit at given velocity υ0, with
respect to all possible angles φ can be estimated by the integral of

the quantity log |dφ′/dφ| over all possible angles:

log

∣∣∣∣dφ′

dφ

∣∣∣∣ = 2

π

∫ π/2

0
log

∣∣∣∣dφ′

dφ

∣∣∣∣ dφ

= 2

π

∫ π/2

0
log

∣∣∣∣∣∣1 − 2
1 + m

rmυ2
0

csc2 φ

1 + m

r2
mυ4

0
csc2 φ

∣∣∣∣∣∣ dφ

= 2

π

∫ π/2

0
log

∣∣∣∣
(

1 − 2
α0 + sin2 φ

α2
0 + sin2 φ

)∣∣∣∣ dφ

= 2

π

∫ π/2

0
log

(
2
α0 + sin2 φ

α2
0 + sin2 φ

− 1

)
dφ

= log

(
2

1 + α0

1 + α2
0

− 1

)

+ 2 log

√
1 + α2

0

(
1 +

√
α0(α0−2)
α2

0−2α0−1

)
α0 +

√
1 + α2

0

, (A6)

where α0 = m/rmυ2
0 . At mass ranges 10−5 < m < 10−2 the value

of α0 is in general a small quantity, except for small energies
(E < 0.03 in our units), which, however, can be readily checked
to correspond to orbits residing always within the sphere r = rm,
i.e. pyramids (Merritt & Vasiliev 2011). Excluding such orbits, we
set α2

0 = 0 in the previous equation and obtain

log

∣∣∣∣dφ′

dφ

∣∣∣∣  log (1 + 2α0) + 2 log

(
1 +

√
−2α0

−2α0−1

)
a + 1

= log (1 + 2α0) + 2 log

(
1 + √

α0

√
−2

−2α0−1

)
a + 1

. (A7)

Expanding equation (A7) with respect a
1/2
0 we find

log |dφ′

dφ
|  2α0 + 2 log (1 + √

α0

√
2) = 2α0 + 2

√
2
√

α0

= 2(
rmυ2

0

)m +
√

22(
rmυ2

0

)1/2

√
m 

√
8(

rmυ2
0

)√
m. (A8)

In equation (A8) the quantity rm depends on m (rm ∝ m1/3). Fur-
thermore in the limit of the sphere of BH’s influence, energy is
approximately equal with the kinetic energy (υ2

0 ∝ E), whereby the
last expression can be written in the form

a ≈ log|dφ′

dφ
| ∝ m1/3

E1/2
, (A9)

i.e. we arrive at the estimate of equation (17).

This paper has been typeset from a TEX/LATEX file prepared by the author.
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